R. Autorino

DIAGNOSTIC IMAGING IN ONCOLOGY

Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy

Rosa Autorino¹ · Benedetta Gui¹ · Giulia Panza² · Luca Boldrini¹ · Davide Cusumano^{1,3} · Luca Russo¹ · Alessia Nardangeli¹ · Salvatore Persiani² · Maura Campitelli¹ · Gabriella Ferrandina¹ · Gabriella Macchia⁴ · Vincenzo Valentini^{1,2} · Maria Antonietta Gambacorta^{1,2} · Riccardo Manfredi^{1,2}

Radiomics is the process of extraction of quantitative features from standard radiological imaging for clinical decision making tool Texture Analysis, Hystogram Analysis and Morphometric Analysis represent the three main approaches for Features extraction

Dedicated **software** needed

Imaging

Segmentation

Feature extraction

Analysis

I) CT imaging	II) Feature extraction	III) Analysis
	Tumour shape	Radiomic features Gene expres
	1 1 1 2 1	

Wavelet

Radiomics features from T2-weighted 1.5 T MR images could **predict 2yOS** in patients with LACC **before NACRT?**

Retrospective study

Patients with **Cervical Cancer** stage FIGO **IB2-IVA** without distant metastasis (cMo) treated with **NACRT** + radical hysterectomy +/- pelvic and/or lombo-aortic lymphadenectomy

Treatment workflow

→All patients underwent **NACRT** followed by **surgery**

39.6 Gy @ 1.8 Gy/fr at whole pelvis + 50.6 Gy @ 2.3 Gy/fr at primary tumor

with CDDP weekly

Staging MR:

- 1.5T T2 HR
- (Para)axial slices
- section thickness: 3 mm

GTV delineation:

- A RO and a Radiologist delineated the **primary GTV** excluding the lumen (no nodes)

4	features.name \diamond	all.pvalues 🔷	padj 🌷
726	F_cm.corr_0.7	0.001097667	0.4943522
751	F_cm_merged.corr_0.7	0.001151189	0.4943522
505	F_cm.corr_0.6	0.001455952	0.4943522
530	F_cm_merged.corr_0.6	0.001831808	0.4943522
947	F_cm.corr_0.8	0.002193120	0.4943522
972	F_cm_merged.corr_0.8	0.002504824	0.4943522
1168	F_cm.corr_0.9	0.002617229	0.4943522

46 features showed significance (p<0.5) at the univariate analysis

25	F_morph.comp.1	0.019439588	0.9746422
257	F_morph.sph.dispr_0.5	0.021562861	0.9746422
259	F_morph.asphericity_0.5	0.021562861	0.9746422
478	F_morph.sph.dispr_0.6	0.021562861	0.9746422
480	F_morph.asphericity_0.6	0.021562861	0.9746422
699	F_morph.sph.dispr_0.7	0.021562861	0.9746422
701	F_morph.asphericity_0.7	0.021562861	0.9746422
920	F_morph.sph.dispr_0.8	0.021562861	0.9746422
922	F_morph.asphericity_0.8	0.021562861	0.9746422

Grey-Level Co-occurrence Matrix (GLCM)

Texture analysis is concerned with the spatial distribuition of gray level variation within an image

2ys OS

Strenght points

 \rightarrow TRIPOD 3

Collins GS, et al. the TRIPOD statement. Ann Intern Med 2015.162:55-63.

- Sound Methodology
- External validation studies

«Development of a prediction model using one data set and an evaluation of its performance on separate data»

Limit of the study

- NACRT is not standard treatment
- Lack of a biological interpretation (clinical, histopathological and molecular data) of the significant features limits the translational value of this experience, even if this issue is not considered mandatory for radiomics study

→ The proposed Radiomic Model showed promising performances in predicting 2yOS before NACRT.

→ Larger studies with a consistent external validation are mandatory

→ Integration with **clinica**l, **histopathological** and **molecular data**, which would allow to build **multi-omics predictive models**

«An accurate outcome prediction before or during oncological treatments could be an added clinical value to provide a guidance for clinicians in their decision-making process to adapt and tailoring treatment.»

→ Potential tools to **clinical practice**

Original Article

Evaluation of early regression index as response predictor in cervical cancer: A retrospective study on T2 and DWI MR images

Davide Cusumano^{a,b}, Luca Russo^a, Benedetta Gui^a, Rosa Autorino^a, Luca Boldrini^{a,*}, Luca D'Erme^a, Salvatore Persiani^a, Francesco Catucci^b, Sara Broggi^c, Giulia Panza^d, Alessia Nardangeli^a, Maura Campitelli^a, Gabriella Ferrandina^a, Gabriella Macchia^e, Claudio Fiorino^c, Vincenzo Valentini^{a,d}, Giovanni Scambia^{a,d}, Riccardo Manfredi^{a,d}, Maria Antonietta Gambacorta^{a,d}

EARLY REGRESSION INDEX

$$ERI = -ln\left[\left(1 - \left(\frac{V_{mid}}{V_{pre}}\right)\right)^{V_{pre}}\right]$$

Vpre GTV volume during simulation Vmid GTV volume at the mid of therapy

Fiorino et al, A TCP-based early regression index predicts the pathological response in neo-adjuvant radio-chemotherapy of rectal cancer, Radiotherapy and Oncology 128 (2018) 564-568 (tem

AR1

Fondazione Policlinico Universitario Agostino Gemel

Università Cattolica del Sacro Cuore

CERVICAL CANCER

- 16 patients, Long Course MRI-guided Radiochemotherapy
- 50.6 Gy @2.3 Gy/fr
- 2 observers
- pCR prediction

Cusumano et al, Evaluation of an Early Regression Index (ERITCP) as Predictor of Pathological Complete Response in Cervical Cancer: A Pilot-Study, Applied Sciences, 2020

To evaluate the feasibility of using this parameter in the context of Locally Advanced Cervical Cancer (LACC), evaluating its ability in predicting pCR starting from T2 and diffusion weighted images (DWI)

- **88 patients** retrospectively enrolled
- Locally advanced cervical cancer (LACC)
- FIGO stage **IB2 IVA**
- Histologically proven

All patients underwent NACRT followed by surgery

39.6 Gy @ 1.8 Gy/fr at whole pelvis + 50.6 Gy @ 2.3 Gy/fr <u>simultaneus integrated boost</u>

Università Cattolica del Sacro Cuore

MRI IMAGES:

- ✓ 1.5T T2 High Resolution MRI
- ✓ GE Medical System MR
- ✓ Pixel spacing: 0,39 1,17 mm
- ✓ Para-axial slices
- ✓ section thickness: 3-5 mm

Image <u>Parameter</u>	T2-weighted	DWI
Sequence	FSE	FSE
Echo time (ms)	16	16
NEX	2	2
Repetition time (ms), TR	470	470
No. of sections	30	30
Receiver bandwidth (kHz)	31,25	31,25
Echo train length	3	3
Field of view (mm), FOV	24	24
Section thickness (mm)	4	4
Section spacing (mm)	0,5	0,5
Spatial Resolution (mm)		
h Value (s/mm ²)		
Phase direction	A/P	A/P

Staging and at fraction 10

- GTV was delineated on simulation CT imaging and at fraction 10 in axial (A and B) and sagittal plan (C and D) using the MR supporting images.
- CTV1 = GTV
 CTV2 = entire cervix, uterus, parametria, vagina and the corresponding drainage nodal
- GTV was retrospectively delineated by two radiologists blinded with respect the outcome of the therapy.
- **ERI** was calculated for T2 and DWI images

Clinical Characteristics

Number of patients	88
Age (Mean)	22-76 (50.2)
Histology	
mstology	
Squamous cell carcinoma	86 (97.7%)
Adenocarcinoma	2 (2.3%)
FIGO Stage	
IB2	6 (6.8%)
ΠА	8 (9.0%)
IIB	63 (71.5%)
IIIA	2 (2.2%)
IIIB	8 (9.0%)
IVA	1 (1.5%)
Nodal status	
N0	41 (46.5%)
N1	47 (53.5%)
Pathological Response	
pR0	37 (42.0%)
pR1	28 (31.8%)
pR2	23 (26.2%)

^	Sensitivity 🗢	Specificity	Threshold 🍦	J_index 🍦	AUC $^{\circ}$	Low_AUC [÷]	High_AUC [‡]
ERI_T2	43.24324	97.43590	5.007381	0.4067914	75.74498	64.95075	86.53920
	86.48649	64.10256	18.247302	0.5058905	80.38808	70.52463	90.25153

ERI-TCP as a good biomarker also in case of LACC, especially if calculated considering DWI

Personalized Treatments

Cure Strategy Optimization

